10

Cette proposition dit qu'il n'existe, à un isomorphisme près, qu'un seul groupe cyclique d'ordre $n \in \mathbb{N}^*$, et qu'un seul groupe monogène.

Prop.3: Tout groupe cyclique d'ordre $n \in \mathbb{N}^*$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$.

Tout groupe monogène infini est isomorphe à Z.

I. <u>Développement</u>

Supposons tout d'abord que G soit fini d'ordre n, on traitera le cas G monogène infini dans le dernier paragraphe.

A. Mise en place du morphisme (~ exponentielle) qui permettra de quotienter, étude de KerΨ.

Soit
$$G = \langle a \rangle = \{e; a; ...; a^{n-1}\}$$
, on a: $o(a) = n > 0$ et $a \neq 0$.

Considérons
$$\psi: \begin{cases} (\mathbb{Z},+) \to (G,\times) \\ k \mapsto a^k \end{cases}$$
.

Ψ est un morphisme: $\forall k, k' \in \mathbb{Z}$, $\psi(k+k') = a^{k+k'} = a^k.a^{k'} = \psi(k) \times \psi(k')$.

Par définition de $G=\langle a \rangle$, Ψ est surjective. (tout élément de (G, \times) admet un antécédent par Ψ).

$$Ker\psi = \{k \in \mathbb{Z} \mid a^k = e\}$$
 est un sous-groupe de $(\mathbb{Z},+)$.

Par ailleurs, KerΨ≠{0} car n∈KerΨ.

B. "Lemme": Montrons que tous les sg H de (Z,+) non réduits à {0} sont de la forme kZ, k∈N*.

a) Détermination d'un candidat $k \in \mathbb{N}^*$ pour que $H \simeq k\mathbb{Z}$

Soit H un sg de $(\mathbb{Z},+)$, $H\neq\{0\}$. $\exists a\in H$ tq. $a\neq 0$.

- Ou bien a>0, et $H \cap \mathbb{N}^* \neq \emptyset$
- Ou bien a<0, et comme H est un groupe, -a>0 appartient à H, et donc $H \cap \mathbb{N}^* \neq \emptyset$.

Ainsi, dans tous les cas, $H \cap \mathbb{N}^* \neq \emptyset$, donc H contient une partie non vide de \mathbb{N}^* , qui admet un plus petit élément. Soit $k \in \mathbb{N}^*$ ce plus petit élément.

b) Montrons que $k\mathbb{Z} \subset H$.

On a $k \in H$ et H est un groupe additif, donc $\forall n \in \mathbb{N}$, $kn \in H$. Comme H est un groupe additif, $-kn \in H$, donc $k\mathbb{Z} \subset H$.

c) Montrons que $H \subset k\mathbb{Z}$.

Rappelons que H est un sg de $(\mathbb{Z},+)$, $H\neq\{0\}$. Soit $x\in H\subset \mathbb{Z}$. On fait la division euclidienne de x par k, il vient:

x = kq + r, où $q \in \mathbb{Z}$, $r \in \mathbb{N}$ et $0 \le r < k$. Or $k \in H$ groupe additif, donc $qk \in H$. Par conséquent (H sg additif) $r = x - kq \in H$.

Donc $r \in H \cap \mathbb{N}$, et comme r<k, r=0 par définition de k comme plus petit élément.

Finalement, x=kq, avec $k\in\mathbb{Z}$, donc $H\subset k\mathbb{Z}$.

C. Application à Ker Ψ , où l'on montre que Ker Ψ =n \mathbb{Z} , où n=o(a).

Ainsi, en considérant l'application Ψ déterminée au \mathbf{A} ., $\exists k \in \mathbb{N}^*$ tq $\text{Ker}\Psi = k.\mathbb{Z}$ (car $\text{Ker}\Psi$ sg de $(\mathbb{Z},+)$ non réduit à $\{0\}$). On sait que o(a) = n, donc $a^n = 1$, donc $n \in \text{Ker}\Psi$, et par conséquent $\exists q \in \mathbb{Z}$ tq. n = kq.

Il vient donc $a^{kq} = a^n = 1$. Or Ker $\Psi = k\mathbb{Z}$, donc $k \in \text{Ker}\Psi$ et par suite $a^k = 1$.

Mais n est le plus petit entier $tq a^n=1$, donc k=n, et q=1.

Donc $Ker\psi = n\mathbb{Z}$, où n=o(a).

D. Conclusion grâce au premier théorème d'isomorphisme.

Or d'après le premier théorème d'isomorphisme, le morphisme Ψ se décompose comme suit (diagramme commutatif):

$$(\mathbb{Z},+) \xrightarrow{\Psi} (G,\times)$$

$$\downarrow \qquad \uparrow \qquad \text{où Im}(\Psi) =$$

$$\mathbb{Z} / Ker \psi \xrightarrow{\sim} \operatorname{Im}(\psi)$$

Donc $\mathbb{Z}/\text{Ker}\Psi \simeq \langle a \rangle$

i.e. d'après ce qui précède $\mathbb{Z}/n\mathbb{Z} \simeq \langle a \rangle$, où n=o(a).

Ainsi $G \simeq \mathbb{Z}/n\mathbb{Z}$, où $n \in \mathbb{N}^*$ est l'ordre de G.

E. Cas où l'ordre de G est infini.

$$\psi: \begin{cases} \left(\mathbb{Z},+\right) \to \left(G,\times\right) \\ k \mapsto a^k \end{cases} \text{ est un morphisme surjectif.}$$

Afin de montrer que Ψ est bien l'isomorphisme recherché, raisonnons par l'absurde en supposant Ψ non injectif.

Si Ker $\Psi \neq \{0\}$, alors Ker Ψ est un sous-groupe de \mathbb{Z} non réduit à $\{0\}$, et $\exists n \in \mathbb{Z}$ tq. Ker $\Psi = n\mathbb{Z}$.

Donc, en appliquant le premier théorème d'isomorphisme comme ci-dessus, on a $\mathbb{Z}/n\mathbb{Z} \approx <a>$, et par conséquent ces groupes sont de même ordre, i.e. $o(\mathbb{Z}/n\mathbb{Z})=n=o(a)$, ce qui contredit l'hypothèse $a=\infty$.

Donc Ψ est injective, et $G \simeq \mathbb{Z}$.

II. Commentaires.

Si c'est trop long, on peut considérer comme acquis la forme des sg. de $(\mathbb{Z},+)$. A voir selon timing.

Il peut être aussi judicieux de le présenter comme un "Lemme" en début de démonstration.